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Modern design of belt conveyors in the context of
stability boundaries and chaos

By A. HARRISON

Winders, Barlow and Morrison, Englewood, Colorado 80112, U.S.A. and
Department of Engineering, Colorado School of Mines, Golden, Colorado, U.S.A.
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Belt conveying of bulk materials has evolved to the point where the demands of the
modern mine to increase capacity is limited by the ability of engineers to design
dynamically stable conveyors. Belt speed and width are two parameters that may be
varied in the design to provide the required material flow rate. For certain values of
belt speed, width and tension, unstable transverse belt vibration has been observed.
Large-amplitude vibration may be so severe that the life of the supporting idler
bearings is reduced significantly due to dynamic loads. Monitoring idlers for bearing
failure in modern conveyors with lengths up to 20 km is practically difficult since
there may be as many as 20000 idler sets. Chaotic transverse belt vibrations occur
for certain levels of excitation, further complicating the prediction of bearing life.
Before conveyor installation, an estimate of the stability boundaries for resonance-
free operation is an essential precursor to failure-free conveyor operation. Nonlinear
resonance phenomena such as belt flap is sensitive to initial conditions. The effects
of chaotic vibrations on the predictability of design stability is reviewed using some
examples of forced vibrations.
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1. Introduction

Current conveyor design practice outlined in the International Standard ISO5048
(1979) is based on belt sag and rolling friction, and both need to be minimized to
minimize belt power consumption. In achieving this goal the support structure of the
carry and return-side belting is designed to maintain belt sag below 3% by the
appropriate use of belt pre-tensioning. In this respect, the conveyor design may be
optimum for steady-state operation but the belt will usually exhibit severe
transverse vibrations at some location along its length due to idler support
excitation.

Design parameters of modern conveyors vary greatly and depend on the
application. By way of background, a typical belt conveyor has a length of 1600 m,
moves at a velocity of 3.5 m s7%, has a belt width of up to 2 m, conveys mine product
up and down gradients as high as 16 % with a material flow rate of up to 3000 t h™
and consumes power at amounts in excess of 3 MW. Larger systems do exist where
tonnages of the order of 10000 t h™" are conveyed and where the belt length exceeds
20000 m.

There are two distinctive dynamic effects in modern conveyor belt design that are
governed by nonlinear processes, namely transverse belt vibrations and longitudinal
wave motion induced in the belt on starting and stopping.
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492 A. Harrison

There is a large literature on longitudinal or elastic wave propagation in belts. The
belt’s dynamic elastic properties on starting and stopping can result in unstable
behaviour of both belt sag and drive motor power. Funke (1974) and Harrison (1981)
modelled transient stresses in conveyor belts on starting and stopping using a wave
model. The development of finite element models by Nordell & Ciozda (1984) verified
the wave approach of earlier researchers, whereas the numerical stability of finite
difference methods was researched by Morrison (1988). Although this aspect of
modern conveyor design is not the thrust of this paper, variation in belt tensions
during a transient phase will influence the stability of transverse vibrations on
starting or stopping but this effect will not govern the failure rate of idlers.

A more important aspect of modern conveyor belt design is the analysis of the
dynamic stability of moving, unsupported belting under an axial tension. Harrison
(1979) investigated the transverse flexural vibrations of flat and troughed steel cord
reinforced belting using non-contact variable reluctance magnetic transducers. These
transducers (U.S. Patent 4439731) permitted the measurement of the vibration
frequencies of the flapping belt as it moved on its roller supports. Deflections of the
order of 150 mm are observed at resonance and the ease in which resonances are
excited is a direct consequence of the small amounts of internal and external
damping, leading to a high mechanical ¢ near 100. Measurements indicate the
presence of nonlinear processes that are usually unstable and often chaotic.

Prediction of the transverse vibration frequencies of a running belt under axial
tension involves the development of a mechanical model of the problem. Plate
mechanics have been used by Harrison (1983 a, b) to describe the problem including
its viscoelastic boundary conditions. Although one may predict with good accuracy
the flexural frequencies of the vibrating belt, the boundaries for flexural stability are
more difficult to analyse because the problem itself is sensitive to initial conditions.
For example, the belt’s mass may vary slightly, belt surface friction is not constant,
and idler rotation frequency will shift as fine material adheres to the idler during
conveyor operation.

Phase plane portraits of the transverse vibration of unsupported belting have been
used with success to show the existence of strange attractor motion and period
doubling, as reported by Harrison (1990). Unstable and chaotic effects might be
expected with flapping belts since the deflections become large and lift-off of the belt
from its idler support will extinguish the resonant cavity. Idlers are often
manufactured with a small amount of eccentricity and so form a basic source of
rotational forcing excitation for the belt.

Jonveyor belt system design will be reviewed in the context of stability boundaries
and chaos of the transverse vibration problem. The prediction of stability boundaries
is needed early in the design of the conveyor to allow estimating engineers to take
into account the influence of these dynamic factors in the project’s costing.

2. Modern design philosophy

The mining industry is continually trying to reduce handling and conveying costs.
This philosophy has led conveyor system manufacturers and design engineers to
develop designs that use wider belts, resulting in considerable structural cost penalty
as pointed out by Roberts et al. (1981). To move large volumes of bulk materials, the
alternative of narrow fast belts proposed by Harrison & Roberts (1983) requires the
application of dynamic analysis to the design. An emphasis on the concept of design
Phil. Trans. R. Soc. Lond. A (1992)
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Figure 1. Conveyor belt tensions and wave dynamics.

for reliability is applicable in modern conveyor technology. The effect of parametric
variations in boundary conditions on the stability of the design is therefore directly
applicable in design reliability.

Narrow high-speed belts are ‘less prone’ to transverse vibration since belt flap
frequencies are usually beyond idler excitation frequencies. Flapping belt can reach
large amplitudes resulting in lift off and dynamic impact that will overload idler
support rollers, causing premature failure of idler bearings. The speed and width of
the belt is selected to ensure that the design capacity of the system is achieved.

Before discussing the dynamics of a transversely vibrating conveyor belt, one need
to supply some background to conveyor design. Figure 1 illustrates a side elevation
schematic of a typical long conveyor, including a cross-section of the loaded belt and
the running tensions around the system for loaded and unloaded states. A belt’s
tension distribution along its length is due to combinations of gravity acting on the
system mass and rolling friction. The axial tension in the belt is one of the more
important parameters governing resonance location. On starting or stopping, belt
tensions vary and so resonances may appear and disappear during this phase of
operation. Figure 1 may be used to illustrate the changing belt tensions on starting
or stopping, and in this case, for the empty belt condition. Tension changes
propagate at the speed of sound in the belt as described by Harrison (1991).

The transverse modes of vibration of a conveyor belt, at any cross-section x — X
in figure 1, needs to be established to carry out stability studies.

Flexural vibration of the unsupported return strand of belting is of greatest
interest in the design of the modern high-speed conveyor belt because of the
possibility of large amplitude resonances. Figure 2 shows an example of some
commonly observed flexural shapes of a transversely vibrating belt.

The partial differential equation of motion for the moving belt is described using
the usual notation (Harrison 1983). In the notation, w describes the belt deflection

Phil. Trans. R. Soc. Lond. A (1992)


http://rsta.royalsocietypublishing.org/

A

ya

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

\

(3

A

/
/

Vi

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

494 A. Harrison

edge
vibrations

(b)

vibrations

edge

Figure 3. Vibrations that become unstable in flat belts.

in the vertical z axis, « defines the axis in the direction of belt travel and y represents
the axis across the belting. The partial differential equation describing the transverse
flexural motion of the belt is
- 0*w i *w - QMw . Pw L 0%w

l)x@”l)waxz—ayz”)yw =—Mgw+¢), 27J6x6t+hzw+[{w = ¢, (2.1)
where D represents a flexural rigidity, My is the belt mass per unit length, v is the belt
speed, K is the damping, E?* = (v —1T,(y)/My) and T, (y) is the tension distribution
across the belt at a location x along the profile. In reality, 7,(y) is non-uniform and
for analysis of the problem it is assumed that the belt tension has an average value
T,.

Built-in manufacturing anomalies affect the load sharing of the axial reinforcing
members inside the rubber belt, and these anomalies are the origin of 7)(y). This
variable affects the transverse vibration frequency and so contributes to the
uncertainty in the boundary conditions for resonance prediction. Given the above
constraints, the natural frequency plate modes (m,n) for each vibrating belt span
moving at speed v is determined by

Jnn(®) = frnn(0) [1=22/c?], (2.2)

Phil. Trans. R. Soc. Lond. A (1992)
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where f,,,(0) is the zero speed natural plate frequency, and ¢ is determined using
¢* = [Dy g/ M g(mma)’)]| - E?, (2.3)
Sn(0) = mc/2a, (2.4)

with m the mode of vibration along  (the axial belt direction), » is the mode across
the belt and a is the idler spacing. Values of the non-dimensional frequency
parameter g,,, are governed by the plate aspect ratio (length-to-width) as discussed
by Harrison (1986). Figure 3 shows a selection of some commonly observed mode
shapes for a vibrating span of a flat belt. These modes easily become unstable.

In keeping with the aim of this paper to provide engineers with a design
methodology that results in a dynamically stable conveyor, the range in the
frequency of belt vibration needs to be established. The frequency of a particular
mode of belt vibration should first be calculated and then the system design needs
to ensure that this frequency is located above the idler excitation frequency by
appropriate selection of the belt speed, idler spacing, idler diameter and belt tension.
With an idler diameter d, the idler excitation frequency is simply

fi=v/nd. (2.5)

Another approach that is often successful in maintaining a high belt frequency is to
design a conveyor with a high aspect ratio. A narrow (0.9 m), longitudinally stiff belt
will have a natural frequency above a wider, more flexible belt. This approach will
ensure that g, is large which in turn will result in a high belt frequency. Belt
bending stiffness also enters into the equation of motion and therefore a stiff belt (D
large) will have a higher frequency than one with a small value of D. Idler spacing
d is one other variable that may be used very effectively by the design engineer. If
unstable transverse vibrations occur the idler spacing may be reduced to increase f,,,,
but then the number of idler sets increase and so does the system cost.

Clearly, those parameters that most affect the predictability of the belt’s resonance
frequency are localized belt mass variations, localized variations in ¢ resulting from
changes to the plate aspect ratio as the belt mistracks, variations in belt tension 7}, (y)
due to nonlinear viscoelastic temperature effects and local variations in belt bending
stiffness. Each of these parameters have an influence on the stability window, which

may be defined as (@) —C) < fy < (frn(®0)—C), (2.6)

where ', and (), are the lower and upper bounds of the belt’s natural frequency as
discussed above. Belt tension 7)(y) (and its average value 7)) still remain the
governing restoring forces in the belt and so will affect the natural frequencies of the
belt to the greatest extent.

However, the variability in natural modal frequency leads to instabilities and
chaotic tendencies in a vibrating belt. The frequencies themselves are totally
determinable for any given set of conditions that can be defined. When nonlinear
interactions begin to dominate the motion through large-amplitude deflections or
axial forcing due to vibration of adjoining spans, the design contains resonances that
are not predictable and are damaging to the supporting structure.

3. Large amplitude vibrations and chaos

In most conveyor belt installations, small-amplitude vibrations (less than 10 mm)
are always present and are usually the result of irregularities in the conveyor belting
and structure. Near-resonant spans behave very differently. Once a boundary

Phil. Trans. R. Soc. Lond. A (1992)


http://rsta.royalsocietypublishing.org/

A
A

r

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

I \\
\
) \

/

A
(

a

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

496 A. Harrison

. e de et
i th ety .\-lk,.‘nr....‘..!‘. ".""."""'"'l

| | |

[}
il O TR a0
«3 it gt ,f;.-.I,l.'A'--‘,n'.-'."‘.:.‘,,..‘r,'_.-':.l,.‘;'.'=1-_- ey A I b ,-L,.ﬂ span 2
a i 1 !
g+
<
v 1 : !
S <ot Span 3
s o
ol
¥ . . Sl ot 4] !!.l,, -
by U sl Rl it span 4
1 o |
L | |
0 10 s 20 '

Figure 4. The unstable vibrations of four spans of flat belting.

condition such as load or temperature changes in the system, unknown resonances
may be excited depending on how close the span of belting is to resonance, according
to (2.6). Forced vibrations result in large amplitudes of vibration (greater than
150 mm). The uncontrolled ‘whipping’ of the belt under this driving condition is
irregular and prone to drop-out similar to that observed in systems that exhibit
hardening effects.

The speed of sound in conveyor belt material is determined using (2.3). When belt
speed and stiffness are neglected (v < ¢,D < 7)), the tension has a dominant influence
on belt model frequency. Since a belt supported on multiple idlers can be represented
by a system of connected plates with boundaries at the idler support, it is possible
that resonance effects in one particular span will influence adjoining spans. In this
case, span frequency will be perturbed by fluctuating axial tensions which have a
maximum value on two occasions during one flexural cycle. Replacing £2 in (2.1) by
a time-dependent variation in tension leads to

(1,4 6T, cos 2w, yw" —KMpw—Mgwo =0 (0<d<1). (3.1)

Experimental data are used to provide evidence of the nature of the flexural
cascades that occur in resonant belt conveyors. Figure 4 shows the coincident time
records of four flat belt spans showing unstable oscillations.

The example in figure 4 shows data recorded from a steel cord reinforced belt type
SR2500 used in a slope conveyor application at a coal mine. The belt was 1.15 m wide
with a speed of 3.4 m s~ and a support spacing of 2.5 m. The belt has a flap frequency
of 8.5 Hz+0.53 Hz. Amplitudes of about 10 cm were recorded. It is noteworthy that
over the 20 s interval, each span has its own unique amplitude and phase.
Expanding one portion of the data to record a 2s interval reveals the nearly
sinusoidal nature of the vibrations except for parts of the waveform that exhibit
dropout behaviour. Figure 5 shows the 2 s interval of vibration of the four spans of
belting, including the relative flexural phases of the vibration.

The upper portion of figure 6 shows the instantaneous flexural positions of the 4
spans of belting at time intervals equivalent to } of the vibration frequency. The
lower portion of the figure reconstructs the flexural model in the time domain. One
notes the similarity of the hypothetical waveforms to those recorded from an actual
belt in figure 5.

Interpretation of the vibration record in figure 5 is facilitated by figure 6. Spans
1 and 2 are vibrating in a flexural cascade mode where the slope at the idler support

Phil. Trans. R. Soc. Lond. A (1992)
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is preserved. This is also the case for spans 3 and 4. However, at the idler support
between span 2 and 3 the belting’s slope is not preserved and so a tension fluctuation
in the 1-2 and 3-4 span forces the conservation of belt tension in the 2-3 span.
Obviously this system is very unstable and readily dependent on initial conditions
such as belt stiffness, mass and the shape of T (y).

Observing that the motion of each span is essentially sinusoidal, the deflection w
in (3.1) may be cast in the form

w(x,t) = A, sin kx 0(t) (3.2)
and substitution into (3.1), reveals the well-known Mathieu equations
My, 04 (KT, + K*37T, cos 2w,, 1) 0+ KM, 0 = 0, (3.3)

where the coefficient of § varies periodically at twice the belt frequency in the axial
direction. Equation (3.3) may also be shown to be equivalent to a forced Duffing
equation, as discussed by Jordan et al. (1987),

G+ KO+ (a0 + 0%) = F, cos Qt. (3.4)

Chaotic and periodic doubling solutions can be obtained from this function due to

the presence of a nonlinear term in the stiffness, as the forcing frequency is varied.
At large amplitudes, the motion is expected to produce unstable behaviour.

In figures 4 and 5, belt vibrations were self excited by an eccentric idler support,

rotating at a frequency near that of the natural frequency. Amplitude stability was

Phil. Trans. R. Soc. Lond. A (1992)
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Figure 7. Large-amplitude vibrations and transient chaos.

governed by initial conditions and also by the degree of periodic forcing at twice the
belt flap frequency. There are at least four distinct types of flexural interactions
identified by Harrison (1990) and these are similar to that of figure 6. The type shown
in figure 6 is most commonly observed.

Chaotic outcomes may be demonstrated when the amplitudes of vibration become
large. Not only does the stiffness term cause nonlinear ‘jump’ processes resulting in
drop-out behaviour and resonance collapse, it will also drive the vibrations to the
point of period doubling through a bifurcation when the forcing frequency is near the
natural model frequency. At large amplitudes of vibration, belt lift-off occurs and
this creates severe instabilities.

4. Forced vibrations and chaotic instability

Two methods have been used to generate large amplitude vibrations in moving
and stationary belts, namely hammer impact excitation and non-contact shaker
excitation. Impact excitation using a large hammer is an effective method of exciting
a tensioned belt to observe the evolution of the motion.

Figure 7 shows the response of a V-return section of belting following hammer
impact. During the initial 0.5 s of the vibration the motion is highly aperiodic, but
eventually the motion stabilizes to a periodic motion with a point attractor. The
frequency of vibration of the 20 Hz sinusoid represents the small-amplitude response
of the belt and is free from nonlinearities. In figure 7, the upper trace represents the
response of the right-hand side of the V-return whereas the lower trace represents the
left-hand portion of the V-return as in figure 2.

During the chaotic phase, there is strong evidence that two attractors are present

between competing tension oscillations. The fact that both waveforms in figure 7 are
in-phase for small amplitude oscillations is due to an induced moment acting at the
V-return bend line. Steady state oscillation at a fixed frequency occurred when the
amplitude of the vibration decayed to a peak to peak value of 40 mm. In this case,
the belting has similar dimensions and physical characteristics to the flat belt
described earlier.

Phil. Trans. R. Soc. Lond. A (1992)
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Figure 8. (a) Forcing current and transverse belt response just before resonance (upper and
lower time traces respectively) and (b) the phase plane response of the belt time record.

Forced transverse vibration of a steel cord reinforced belt has also been achieved
using a non-contact electromagnet shaker. Weighing 70 kg, the shaker was placed
beneath the midspan of a belt with similar physical characteristics to the belt
described earlier. The shaker was designed to impart a small periodic pulling force on
the steel reinforced belt from a distance of 150 mm.

Advantages of this experiment in determining boundaries of stability are
numerous, including the ability to scan the shaker’s drive current from 0-40 Hz at
power levels of 1 kW. An experiment of this type provides the resonance response
curve, permits the calculation of ¢ and damping and allows all tests to be made in
a non-contact manner while the belt is in operation. In addition, the stability of each
span can be monitored to determine the influence of the above governing parameters
(width, mass per unit length, 7,(y) and speed) on the frequencies of adjoining spans.

Figure 8 shows the results of a shaker test on a steel cord belt. The upper signal
trace represents the shaker coil current as a function of time, and the lower signal
trace is the belt’s vibratory response. The belt’s natural frequency was 9.0 Hz. In this
experiment, the forcing current in the coil of the shaker would vary about zero, at
a frequency of about 3.5 Hz, giving an actual field pulling force at 7 Hz. At 7 Hz
excitation, period doubling occurred, as shown in the response signals, where one
observes a bifurcation at the extremities of the belt’s deflection. Phase plane
representation of this vibration near 9 Hz clearly shows the two strange attractor
regions.

Further insight into the mechanics of the problem may be gleaned as the frequency
of excitation increases through the natural resonance point. Large amplitude
deflections begin to occur at approximately 8.75 Hz. The deflections build up to a
peak of about 4100 mm at 8.9 Hz, but just beyond this forcing frequency, the
response drops dramatically. A ‘hole’ in the resonance response curve has the
hallmarks of nonlinearity that are often associated with lift-off or boundary
condition modification. In this case belt lift-off resulted in a momentary collapse of
all vibrations in that given span, but adjoining spans would begin to flex as described
earlier. Figure 9 (left side) shows the hole following resonance in the fast Fourier
transform ‘up’ scan.

During the down frequency scan from 20 Hz to 0 Hz, one observes the hole just
below 9 Hz. Large deflections of the belt have caused lift-off and a subsequent
uncoupling of the idler boundary support, resulting in this response.

Poincaré map representation of the forced motion in the above example is shown
in figure 10. Not shown in this one map is a shift in structure of the map as the

Phil. Trans. R. Soc. Lond. A (1992)

18 Vol. 338, A


http://rsta.royalsocietypublishing.org/

THE ROYAL
OF SOCIETY A

PHILOSOPHICAL
TRANSACTIONS

THE ROYAL
OF SOCIETY A

PHILOSOPHICAL
TRANSACTIONS

Downloaded from rsta.royalsocietypublishing.org

500 A. Harrison
I 1 |
\
|
4 § 4 ‘
scan up scan
S ;dolwn
Sy _ ! -
| |
2 2
i HRERN |
A
11= At A () b i e S
7 9 11 7 9 11
Hz Hz

TFigure 9. Forced resonance curves for an ‘up’ and ‘down’ scan showing the drop-out
g . . ~
phenomena either side of resonance.

Figure 10. Poincaré map of a 20 s forced vibration.

belt is allowed to continually vibrate under shaker excitation near the resonant
(m,n) = 1,1 mode. Variations in the sub-harmonic content over time have been
viewed as moving structure in the Poincaré map. There is some evidence that the
vibration contains fractal structure but damping in this case is very small and
there are insufficient points in the map record to fully observe damping influences.
The period of vibration near resonance is also difficult to quantify in this example.

5. Design considerations

There is sufficient evidence that transverse belt vibration is, on the one hand,
damaging to a design and on the other, controllable by proper selection of
components. Figure 11 shows the basic design variations that may be implemented
with regard to idler spacing. The correct positioning of the idlers is perhaps the single
most practical method of obtaining a resonance-free belt.

Figure 11 has been included in this paper to show the strategy behind the redesign
of a conveyor structure to remove transverse belt vibrations. Usually the reduction
of resonances at a design stage or for a working conveyor is a difficult task to achieve

Phil. Trans. R. Soc. Lond. A (1992)
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Figure 11. Concept of resonance removal by structural redesign. (¢) Resonance at pre-tension 1,
(b) resonances at pre-tension 2, (¢) design for no resonances.
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frequency —

because the conveyor structure is modular. Usually idlers are located at a vertical
beam support position and these are governed by steel strength for a certain
unsupported length of total conveyor. Belt sag is also kept to a maximum of about
3% and these considerations form the basis for cost estimates during design.

Conveyors may be retro-fitted with additional idlers to remove transverse
vibrations, but due to the mechanical constraints imposed by the structure, this
approach is costly and usually means that additional structure is required to be
added to the existing support. Figure 12 illustrates the design boundaries for belt
stability through idler excitation sources.

The common modal frequencies for the belt for a given tension at a given
temperature (upper trace) are modified for belt speed (second trace). The third trace
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includes increases in belt frequency due to parametric variations in belt mass or
stiffness, and the final record shows the unstable regions. Idler diameters should be
selected so that operation is in the stable zones (figure 12) and preferably below the
first mode’s zone of instability. In the design solution space one can use the following
guidelines :

(i) calculate the belt natural frequency and excitation frequencies;

(ii) determine a stability boundary based on parameter variations;
(iii) determine the location of zones of resonances along a belt;
(iv) modify idlers configuration or change take-up mass to remove resonances.

6. Concluding comments

Design of mechanical belt conveyors requires the application of dynamic analysis
to predict locations of transverse vibrations. The equations defining the motion of a
moving belt have been determined. Apart from irregularities in the various
parameters that govern the vibration, the system is essentially deterministic until
large amplitudes of vibration appear. Large-amplitude resonances result in period
doubling and chaotic motion and these effects have been measured and the
techniques for measuring these chaotic vibrations have been described.

Of great interest to design engineers is the boundary of stability of a given design.
The paper has discussed by way of example the many and various limits that need
defining to submit a dynamically stable design. A number of options have been
described that apply the new insights of chaos theory to this nonlinear forcing
problem and experiments have suggested that the rotational frequency of idlers
needs to be about 2 Hz below the highest belt frequency, to prevent large amplitude
vibrations that whip chaotically and cause idler destruction.
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